Safety and Performance of a Novel Beating-Heart Mitral Valve Repair System: 1-Year Outcomes

AATS Mitral Conclave, New York, NY USA
May 2-3, 2019

James S. Gammie, MD on behalf of the HARPOON EFS and CE trial investigators:

Krzysztof Bartus, Andrzej Gackowski, Michael N. D’Ambra, Piotr Szymanski, Agata Bilewska, Mariusz Kusmierczyk, Boguslaw Kapelak, Jolanta Rzucidlo-Resil, Neil Moat, Alison Duncan, Rashmi Yadav, Steve Livesey, Paul Diprose, Gino Gerosa, Augusto D’Onofrio, Demetrio Pitterello, Paolo Denti, Giovanni La Canna, Michele De Bonis, Ottavio Alfieri, Judy Hung, and Piotr Kolsut
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Affiliation/Financial Relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consulting Fees/Honoraria</td>
<td>• Edwards Lifesciences</td>
</tr>
<tr>
<td>• Founder</td>
<td>• Harpoon Medical</td>
</tr>
</tbody>
</table>
The Majority of Severe Degenerative Mitral Regurgitation Patients are Untreated

4,100,000
Total MR patients

1,670,000
Eligible for treatment (MR 3/4+)

30,000
Annual MV surgery rate: ~2%

Reasons eligible patients do not receive mitral surgery include:

- Asymptomatic
- Symptomatic but not diagnosed
- Not referred
- Patients refuse surgery
Mitral repair is associated with better outcomes than replacement for patients with degenerative leaflet prolapse, repair rates have been stable between 2011 and 2016 and approximated 80%.
Individual Surgeon Volume Influences MV Repair Rate and Outcomes

5,475 DMR patients underwent MV operations in NY state

MV repair rate in degenerative MV disease 67%

Higher total annual surgeon volume associated with
• Increased repair rates
• Steady decrease in reoperation risk
• Improved 1-year survival

Surgeons perform median of 10 mitral valve procedures / year

Reprinted from Chikwe. JACC 2017, with permission from Elsevier.
Although Mitral Repair is the Gold Standard for Severe DMR, Challenges Remain

Cleveland Clinic Experience

- 2,575 patients with isolated posterior leaflet repair
- Recurrent MR at 2 weeks:
 - Moderate: 6%
 - Severe or moderate-severe: 5%
- 89% of patients with ≤ mild MR at 2 weeks

Surgical Arm of EVEREST II

- 80 patients with surgical repair
- Replacement 14%
- One year:
 - Death: 6%
 - Reoperation 2%
 - Recurrent moderate or severe MR: 17%
- 76% of patients with ≤mild MR at 1 year

Feldman. NEJM 2011
HARPOON Beating-Heart Mitral Valve Repair System

Beating-heart, image-guided chordal mitral valve repair

Goals:

- Replicate ePTFE non-resectional MV repair
- Transventricular, beating-heart
- Address the needs of DMR surgical candidates early in the treatment continuum

Image Courtesy A. M. Gillinov, MD
HARPOON Beating-Heart Mitral Valve Repair System

Delivery System and Introducer

- Simple, minimally-invasive, beating-heart, off pump repair
- Echo-guided chordal placement
- Real-time confirmation MR reduction

- Pre-loaded ePTFE suture
- Low-profile 9F shaft
- Hemostatic valve
- Self-tying, double-helix knot on ePTFE suture
Two Prospective, Multicenter, Single-Arm Trials

- Patients with severe mitral regurgitation due to isolated posterior leaflet prolapse were treated with HARPOON system*
- Follow-up ongoing to 3 years
- Serious Adverse Events adjudicated by a Clinical Events Committee
- Echocardiographic analyses: Independent Core Laboratory (Massachusetts General Hospital – Judy Hung, M.D.)
- Aggregated experience from EFS and CE studies are reported here

*For EFS, patients with moderate-to-severe MR were included

Early Feasibility Study (EFS)
N=13
2 Sites in Poland
Patients enrolled Feb 2015-Feb 2016

TRACER CE Mark Trial
N=52
6 Sites in Europe
Patients enrolled Mar 2016-Nov 2017
Inclusion and Exclusion Criteria

Key Inclusion Criteria
- ≥18 years of age
- Severe degenerative mitral regurgitation*
- Isolated posterior leaflet prolapse
- Good predicted surface of coaptation

Key Exclusion Criteria
- Anterior or bileaflet prolapse
- Functional mitral regurgitation
- Infective endocarditis
- Severely calcified mitral leaflets
- Severe left ventricular dysfunction
- Renal insufficiency
- STS risk score* >6% or EuroSCORE >8%

*For EFS, patients with moderate-to-severe MR were included

* For mitral valve repair
Participating Sites

EFS

John Paul II University Hospital, Krakow, Poland
(n=10)

Institute of Cardiology, Warsaw, Poland
(n=3)

TRACER CE Trial

John Paul II University Hospital, Krakow, Poland
(n=11)

Institute of Cardiology, Warsaw, Poland
(n=15)

The Royal Brompton Hospital, London, UK
(n=8)

Southampton General Hospital, Southampton, UK
(n=8)

Ospedale San Raffaele, Milan, Italy
(n=4)

University of Padova Hospital, Padova, Italy
(n=6)
Patient Enrollment and Follow-Up

Enrolled (Intent to Treat)
N=65

Implanted (As Treated)
N=62 (95.4%)

1-Year Follow-Up
N=52

Converted to open surgery n=2
Procedure aborted n=1
Death n=2
Study exit due to secondary intervention n=8

Mean study follow up is 1.4 ± 0.6 years
One year clinical follow up was 100%
One year Echo core lab follow up for the 52 patients at 1 year was 100%
Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>% or Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61 ± 12</td>
</tr>
<tr>
<td>Male</td>
<td>76%</td>
</tr>
<tr>
<td>STS</td>
<td>0.6 ± 0.6%</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>1.2 ± 1.1%</td>
</tr>
<tr>
<td>NYHA Functional Class I / II / III / IV</td>
<td>41 / 41 / 19 / 0%</td>
</tr>
<tr>
<td>LVEF</td>
<td>69 ± 6%</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>19%</td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>53.2 ± 5.2</td>
</tr>
</tbody>
</table>
Intraoperative Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Procedure Time (minutes)</td>
<td>126 ± 36 (72-222)</td>
</tr>
<tr>
<td>Introducer Time (minutes)</td>
<td>42 ± 18 (18-126)</td>
</tr>
<tr>
<td>Intraoperative Blood Loss* (mL)</td>
<td>272 ± 182 (50-949)</td>
</tr>
<tr>
<td>Chords Implanted</td>
<td>4.0 ± 1.1 (0-7)</td>
</tr>
</tbody>
</table>

* Data collected for TRACER CE Mark study only, N=51
<table>
<thead>
<tr>
<th>Outcome</th>
<th>% (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0% (0/62)</td>
</tr>
<tr>
<td>Stroke</td>
<td>0% (0/62)</td>
</tr>
<tr>
<td>Reintubation**</td>
<td>0% (0/49)</td>
</tr>
<tr>
<td>Blood transfusion***</td>
<td>0% (0/13)</td>
</tr>
<tr>
<td>Atrial Fibrillation****</td>
<td>18% (9/50)</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>0% (0/62)</td>
</tr>
</tbody>
</table>

* Perioperative is defined as from new onset complications from procedure to discharge
** Data collected for TRACER CE Mark study only
*** Blood transfusion only collected in EFS.
**** Atrial Fibrillation only summarized for those without baseline Atrial Fibrillation

EFS+CE AT cohort
Safety Outcomes at 1 Year

<table>
<thead>
<tr>
<th>Event</th>
<th>Cumulative Events</th>
<th>Probability Event Free (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>2</td>
<td>0.967 (0.922-1.000)</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>1.000 (1.000,1.000)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>1</td>
<td>0.984 (0.952,1.000)</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>0</td>
<td>1.000 (1.000,1.000)</td>
</tr>
<tr>
<td>Reoperation</td>
<td>8</td>
<td>0.866 (0.780, 0.953)</td>
</tr>
</tbody>
</table>

EFS+CE AT cohort
Severity of Mitral Regurgitation (including reoperations)*

- **Baseline** (N=57): 7% Severe, 93% None/Trace
- **Discharge** (N=58): 2% Severe, 74% None/Trace
- **30 Day** (N=61): 2% Severe, 61% None/Trace
- **6 Month** (N=60): 8% Severe, 50% None/Trace
- **1 Year** (N=60): 2% Severe, 45% None/Trace

Three patients had moderate MR at baseline per TTE but pre-procedure TEE showed severe MR.
Severity of Mitral Regurgitation*

* Three patients had moderate MR at baseline per TTE but pre-procedure TEE showed severe MR
98% of Patients in NYHA Functional Class I/II at 1 Year

- Baseline: 19% NYHA Class I, 41% NYHA Class II, 41% NYHA Class III
- 30 Day: 21% NYHA Class I, 79% NYHA Class II
- 6 Month: 5% NYHA Class I, 95% NYHA Class II
- 1 Year: 2% NYHA Class I, 92% NYHA Class II

N=59, N=58, N=57, N=52
Cardiac Remodeling Improvements Sustained at 1 Year

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>30 Day</th>
<th>1 Year</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDD (mm)</td>
<td>53 ± 5</td>
<td>49 ± 5</td>
<td>47 ± 6</td>
<td><0.0001</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>69 ± 6</td>
<td>61 ± 5</td>
<td>63 ± 6</td>
<td><0.0001</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>153 ± 41</td>
<td>120 ± 28</td>
<td>120 ± 28</td>
<td><0.0001</td>
</tr>
<tr>
<td>MV Annular Diameter (mm)</td>
<td>35 ± 5</td>
<td>32 ± 5</td>
<td>31 ± 5</td>
<td><0.0001</td>
</tr>
<tr>
<td>MV Gradient (mmHg)</td>
<td>NA</td>
<td>1.3 ± 0.5</td>
<td>1.4 ± 0.7</td>
<td>NA</td>
</tr>
</tbody>
</table>

P-values were based on testing of baseline versus 1 year EFS+CE AT cohort
Reoperations Within One Year (n = 8/62)

<table>
<thead>
<tr>
<th>Findings</th>
<th>N</th>
<th>Days to Reop</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocarditis</td>
<td>1</td>
<td>27</td>
<td>Proper pre-operative screening</td>
</tr>
<tr>
<td>Indentation at LV insertion site due to excessive reverse remodeling and tension on the chords</td>
<td>1</td>
<td>279</td>
<td>Procedural technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sufficient tissue-to-gap ratio</td>
</tr>
<tr>
<td>ePTFE chord damage due to sharp clamp</td>
<td>1</td>
<td>253</td>
<td>Procedural technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Minimum of 3 chords</td>
</tr>
<tr>
<td>ePTFE knot untied at ventricle</td>
<td>1</td>
<td>72</td>
<td>Procedural technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Proper imaging, target analysis</td>
</tr>
<tr>
<td>Damage to the native chord</td>
<td>1</td>
<td>231</td>
<td>Procedural technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated surgeon training</td>
</tr>
<tr>
<td>ePTFE chordal rupture</td>
<td>2</td>
<td>230, 352</td>
<td></td>
</tr>
<tr>
<td>Insufficient chord placement resulting in rupture</td>
<td>1</td>
<td>226</td>
<td></td>
</tr>
</tbody>
</table>

* P-values were based on testing of baseline versus 1 year
Early Learnings Led to Key Improvements

Patient Screening

- Tissue-to-gap length of 1.5 → 2.0
- Exclude excessive leaflet or annular calcium
- 3D echo images required for screening

Procedural Steps

- Avoid annular reduction more than 5mm
- Implant minimum of 3 chord pairs
- Verify relaxation of the chords during diastole
Conclusions

- These results demonstrate a good safety profile of the HARPOON beating-heart mitral valve repair system.

- Favorable cardiac remodeling and MR reduction was observed at 1 year; early learnings will inform and likely improve future results.

- Proper patient selection, procedural technique, and training are crucial for success.

- Ongoing follow-up and additional investigation will assess the longer term safety and performance of this novel technology.
Thank you

Not available for use or sale in the United States.

For professional use. For a listing of indications, contraindications, precautions, warnings, and potential adverse events, please refer to the Instructions for Use (consult eifu.edwards.com where applicable).

Edwards devices placed on the European market meeting the essential requirements referred to in Article 3 of the Medical Device Directive 93/42/EEC bear the CE marking of conformity.

Manufactured by Harpoon Medical, Inc., a subsidiary of Edwards Lifesciences Corporation.

Indications, contraindications, warnings, and instructions for use can be found in the product labeling supplied with each device.

Edwards, Edwards Lifesciences, the stylized E logo, HARPOON, Harpoon Medical, and the Harpoon Medical logo are trademarks of Edwards Lifesciences Corporation or its affiliates. All other trademarks are property of their respective owners.

© 2020 Edwards Lifesciences Corporation. All rights reserved. PP--EU-0080 v1.0

Edwards Lifesciences • Route de l’Etraz 70, 1260 Nyon, Switzerland • edwards.com