What you need.
When you need it.

EV1000 Clinical Platform

The EV1000 clinical platform from Edwards Lifesciences presents the physiologic status of the patient in an intuitive and meaningful way. Designed in collaboration with you, the EV1000 clinical platform offers you scalability and adaptability for both the OR and ICU.

The EV1000 clinical platform enables you to choose the parameters needed to monitor your patients and may be used with a variety of Edwards advanced hemodynamic monitoring tools for an integrated Edwards Critical Care System.
The EV1000 clinical platform provides the choice of the parameters you want to view and how you want to view them. The platform may be used with the Edwards advanced hemodynamic monitoring portfolio including the ClearSight finger cuff, FloTrac sensor, PreSep and PediaSat oximetry catheters and VolumeView set. The parameters provided by each are outlined below. Further, the platform provides a choice of screens so that you may view the parameters in a manner most meaningful to your clinical situation for visual clinical support.

ClearSight Finger Cuff
(Noninvasive)
The ClearSight system extends clarity to more moderate and high-risk surgery patients and noninvasively provides continuous hemodynamic monitoring including SV, SVV, SVR, CO and continuous blood pressure.

FloTrac Sensor
(Minimally-Invasive)
The FloTrac sensor easily connects to any existing arterial catheter and automatically calculates key flow parameters (CCO/CCI, SV/SVI, SVV, SVR/SVRI) every 20 seconds, making it the practical and reliable solution for hemodynamic optimization in moderate to high-risk surgery.

PreSep Oximetry Catheter
(Central Venous Catheter)
The PreSep oximetry catheter continuously monitors central venous oxygen saturation (ScvO₂), which may be used in the Early Goal-Directed Therapy (EGDT) protocol¹ for the treatment of sepsis.

VolumeView Set
(Transpulmonary Thermodilution)
The VolumeView set provides volumetric parameters (EVLW, GEDV, GEF, PVPI, ITBV) and continuous, calibrated hemodynamic parameters (CCO/CCI, SV/SVI, SVV, SVR/SVRI).

CHOICE
Visualized Physiology

The EV1000 clinical platform presents patient hemodynamic information clearly and simply. Color-based indicators communicate patient status at a glance, and visual clinical support screens allow for immediate recognition and increased understanding of rapidly changing clinical situations for improved decision making.

Real-time Physiology Screen

The real-time physiology screen displays the dynamic changes occurring in your patient. By delivering parameters visually and as numerically, the EV1000 clinical platform allows you to more easily determine the root causes of a particular situation, further assisting and guiding your clinical decisions.

Hemodynamic Optimization

Monitoring and optimizing stroke volume (SV) by volume loading during the surgical procedure or in the immediate postoperative period is a key strategy for reducing postoperative complications. Changes in fluid status (both gain and loss) can be used to calibrate fluid targeting. Cardiac output measured and calculated can be used for combination with SV and hemodynamic to monitor and optimize DO2 with fluid (including red blood cells) and inotropic agents.

These advanced hemodynamic parameters, when combined with a Perioperative Goal-Directed Therapy (PGDT) protocol, may help in maintaining the patient in the optimal volume range. During surgery as long as oxygen consumption is static, SV and SVO2 can be used as a surrogate for DO2. An SVO2 value of 70% can be targeted using fluid (including red blood cells) and inotropic agents.

Perioperative Goal-Directed Therapy Screens

The EV1000 clinical platform provides tools for performing Perioperative Goal-Directed Therapy, enabling you to track and manage key parameters in the optimal range. With enhanced parameter tracking, clinicians have the ability to create and monitor customized protocols.

The “Time In Target Value” value represents the accumulated percentage of time a parameter has been within target during an active tracking session.

Clinicians have the ability to track known protocol targets in addition to identifying the optimal Stroke Volume (SV) target during active monitoring sessions.

CLARITY

Heart rate reflects current heart rate

Flow of blood cells represents cardiac output

Replicated patient position on Frank-Starling curve

Heart size reflects patient volumetric status

Vasculature can depict vasoconstriction or vasodilation

Levels of lung water shown in lungs

CLINICAL SUPPORT

CHOICE

Physio-relationship Screen

The physio-relationship screen depicts the balance between oxygen delivery and consumption, allowing you to identify the root causes of the imbalance and the most appropriate intervention.

Graphical Trend Screen

The graphical trend screen provides you to control, observe, and track interventions over time while providing key parameter trending data. The percentage change indicator provides relative insight into the patient’s condition.

Visualized Physiology

The EV1000 clinical platform presents patient hemodynamic information clearly and simply. Color-based indicators communicate patient status at a glance, and visual clinical support screens allow for immediate recognition and increased understanding of rapidly changing clinical situations for improved decision making.

Real-time Physiology Screen

The real-time physiology screen displays the dynamic changes occurring in your patient. By delivering parameters visually and as numerically, the EV1000 clinical platform allows you to more easily determine the root causes of a particular situation, further assisting and guiding your clinical decisions.

Hemodynamic Optimization

Monitoring and optimizing stroke volume (SV) by volume loading during the surgical procedure or in the immediate postoperative period is a key strategy for reducing postoperative complications. Changes in fluid status (both gain and loss) can be used to calibrate fluid targeting. Cardiac output measured and calculated can be used for combination with SV and hemodynamic to monitor and optimize DO2 with fluid (including red blood cells) and inotropic agents.

These advanced hemodynamic parameters, when combined with a Perioperative Goal-Directed Therapy (PGDT) protocol, may help in maintaining the patient in the optimal volume range. During surgery as long as oxygen consumption is static, SV and SVO2 can be used as a surrogate for DO2. An SVO2 value of 70% can be targeted using fluid (including red blood cells) and inotropic agents.

Perioperative Goal-Directed Therapy Screens

The EV1000 clinical platform provides tools for performing Perioperative Goal-Directed Therapy, enabling you to track and manage key parameters in the optimal range. With enhanced parameter tracking, clinicians have the ability to create and monitor customized protocols.

The “Time In Target Value” value represents the accumulated percentage of time a parameter has been within target during an active tracking session.

Clinicians have the ability to track known protocol targets in addition to identifying the optimal Stroke Volume (SV) target during active monitoring sessions.

CLARITY

Heart rate reflects current heart rate

Flow of blood cells represents cardiac output

Replicated patient position on Frank-Starling curve

Heart size reflects patient volumetric status

Vasculature can depict vasoconstriction or vasodilation

Levels of lung water shown in lungs

CLINICAL SUPPORT

CHOICE

Physio-relationship Screen

The physio-relationship screen depicts the balance between oxygen delivery and consumption, allowing you to identify the root causes of the imbalance and the most appropriate intervention.

Graphical Trend Screen

The graphical trend screen provides you to control, observe, and track interventions over time while providing key parameter trending data. The percentage change indicator provides relative insight into the patient’s condition.

For professional use. CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions and adverse events.

Edwards Lifesciences devices placed on the European market meeting the essential requirements referred to in Article 3 of the Medical Device Directive 93/42/EEC bear the CE marking of conformity.

Edwards, Edwards Lifesciences, the stylized E logo, Edwards Critical Care System, Clarity in Every Moment, ClearSight, EV1000, FloTrac, PediaSat, PreSep, and VolumeView are trademarks of Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners.

© 2016 Edwards Lifesciences Corporation. All rights reserved. E6010/02-16/CC